O.P.Code: 23CE0105 R23 H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR
(AUTONOMOUS)

B.Tech. II Year I Semester Regular & Supplementary Examinations November-2025
SURVEYING
(Civil Engineering)

Time: 3 Hours

|                                 |                     |                                                 | 0                                                                                  | د                                                           | Л                   |                                                                                                                         |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | C                                                |    |                                                                                                        |                                                                     |                                                                      |                                                                            | 1                                                                    | )                  |                                                  |        |                          |                             |                                                     |                                                            |                                             |                                                                          |                   |                                         |                                        | _                                 |                                                                             | Ħ                  |
|---------------------------------|---------------------|-------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------------------------------------|----|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------|--------------------------------------------------|--------|--------------------------|-----------------------------|-----------------------------------------------------|------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------------|-------------------|-----------------------------------------|----------------------------------------|-----------------------------------|-----------------------------------------------------------------------------|--------------------|
|                                 |                     |                                                 |                                                                                    | <b>5</b> 4                                                  | ٥                   |                                                                                                                         |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                  |    |                                                                                                        |                                                                     |                                                                      |                                                                            | 4 G                                                                  | •                  |                                                  |        | <b>_</b> -               |                             | <b>-</b> 00                                         | -                                                          | •                                           | •                                                                        | d                 | c                                       | Ь                                      | 22                                |                                                                             | ne:                |
| A                               | Inst Station        | A and B are in lir                              | Determine the R.                                                                   | Discuss in detail                                           | I jet out the verio | and reduce the le<br>level between the                                                                                  | benchmark of ele                                                       | readings: 0.875,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | The following st                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | paris. | Explain the pris                                 | 9  | N/cm2. Compute during measurem                                                                         | = 6.8N. For steel,                                                  | pull of 147N and                                                     | its length under a                                                         | A steel tape was                                                     | Driefly amplein th |                                                  |        | Make a note on Isocentre | Define photographic mapping | Define tangent le                                   | Differentiate bety                                         | base is inaccessit                          | Mention the form                                                         | Define Levelling. | Make a note on S                        | List any four acc                      | Differentiate bety                |                                                                             | ime: 3 Hours       |
| 1.085                           | Reading on<br>BM(m) | A and B are in line with the top of the temple. | L of the top of a te                                                               | Discuss in detail about the volume by cross section method. | ne mathode of data  | and reduce the levels. Apply the usual crewel between the first and the last points.                                    | vation 132.135m.                                                       | 1.235, 2.310, 1.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | aff readings were                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | Explain the prismatic compass with a neat sketch |    | N/cm2. Compute the true length of during measurement at every 30 m.                                    | $l_{\rm r} = 11 \times 10-6  \mathrm{p}$                            | l at a mean temper                                                   | pull of 98N. A lin                                                         | exactly 30 m long                                                    |                    | (Answer a)                                       |        | socentre.                | hic manning                 | write short note on intrared type of EDM instrument | Differentiate between face left and face right observation | base is inaccessible by single plane method | ula to find the dist                                                     |                   | Make a note on Simpson's one third rule | List any four accessories in surveying | Differentiate between WCB and RB. | (Answer all                                                                 |                    |
| 10°48′<br>7°12′                 | Vertical<br>Angle   | he temple.                                      | UNIT-III  mple from the f                                                          | by cross section i                                          | OR                  | ual checks. Find oints.                                                                                                 | Enter the readin                                                       | 35, 2.930, 3.125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | observed succes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TINIT  | ith a neat sketcl                                | OR | of the line if th                                                                                      | per °C and E for                                                    | rature of 32°C a                                                     | e was measured                                                             | nate methods in                                                      | UNIT-I             | (Answer all Five Units $5 \times 10 = 50$ Marks) | PART-B |                          |                             | EDM instrumer                                       | lace right observ                                          | method.                                     | lance between th                                                         |                   | Tule.                                   | ng                                     | S.                                | the Ouestions 10                                                            | Civil Differential |
| R.L of BM =<br>150.000m AB=50 m | R.L of BM           | Grand Grand                                     | UNIT-III  Determine the R.L of the top of a temple from the following data Station | method.                                                     |                     | and reduce the levels. Apply the usual checks. Find also the difference in level between the first and the last points. | benchmark of elevation 132.135m. Enter the readings in level book-form | readings: 0.875, 1.235, 2.310, 1.385, 2.390, 3.125, 4.125, 0.120, 1.875, 2.300, 2.427, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, 2.425, | The following staff readings were observed successively with level, the instrument has been moved forward after the cooper found in the cooper for the coope |        | h by indicating their                            |    | N/cm2. Compute the true length of the line if the tape was supported during measurement at every 30 m. | = 6.8N. For steel, = 11 X 10-6 per °C and E for steel = 20.58 X 106 | pull of 147N and at a mean temperature of 32°C and found to be 780 m | its length under a pull of 98N. A line was measured with this tape under a | A steel tape was exactly 30 m long at 20°C when supported throughout |                    | 10 = 50  Marks                                   |        |                          |                             | II                                                  | ation                                                      |                                             | Mention the formula to find the distance between the two points when the |                   |                                         |                                        | o was and tatalana)               | $\underbrace{PART-A}_{PART-A}$ (Answer all the Ouestions 10 x 2 = 20 Marks) | · ·                |
|                                 |                     | 6                                               | 3                                                                                  | C02                                                         | 3                   |                                                                                                                         |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | C01                                              |    |                                                                                                        | 5                                                                   |                                                                      | 9                                                                          | 6                                                                    |                    |                                                  | (      | 500                      |                             | 505                                                 | CO3                                                        | ,                                           | CO3                                                                      | C02               | C02                                     | CO1                                    | C01                               |                                                                             | Max.               |
|                                 |                     | 5                                               | <u>ا</u>                                                                           | L1<br>L2                                                    | -                   |                                                                                                                         |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        | L2                                               |    |                                                                                                        |                                                                     |                                                                      | į                                                                          | 12                                                                   |                    |                                                  | ļ      | <u> </u>                 |                             | 1 5                                                 | L2                                                         |                                             | L2                                                                       |                   | L1                                      | L1                                     | 1.2                               |                                                                             | Marl               |
|                                 |                     | 7410                                            | Ž                                                                                  | 5M                                                          |                     |                                                                                                                         |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | 10M                                              |    | Į,                                                                                                     |                                                                     |                                                                      | TATO                                                                       | 2 Z                                                                  |                    |                                                  | 1      | ) M                      | 2 Z                         | 2M                                                  | 2M                                                         |                                             | 2M                                                                       | 2M                | 2M                                      | 2M                                     | 2M                                |                                                                             | Max. Marks: 70     |

| CO4 L1 CO5 L2 CO6 L2 CO | *** TVTV +++ | b Brief about mapping using stereo-plotting instruments with their types CO6 L2 and applications. | a Make a note on mapping using paper prints. | OR | Illustrate about terrestrial photogrammetry in detail. | UNIT-V | <ul> <li>Brief explain about Drone survey and LiDAR survey.</li> </ul> | a Write short notes on Global Positional System. | OR | method. | explain the field procedure of setting out of curve by two theodolite | Mention the various methods of setting out of simple curve. Briefly | UNIT-IV | b Briefly explain the Bowditch's method of adjusting the traverse. | a Write short notes on methods of adjusting the traverse. | Ch |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------------------------------------------------------------------------------------|----------------------------------------------|----|--------------------------------------------------------|--------|------------------------------------------------------------------------|--------------------------------------------------|----|---------|-----------------------------------------------------------------------|---------------------------------------------------------------------|---------|--------------------------------------------------------------------|-----------------------------------------------------------|----|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | ts with their types CO6                                                                           | C06                                          |    | COC                                                    |        | C05                                                                    | C05                                              |    |         | by two theodolite                                                     |                                                                     |         |                                                                    | C04                                                       |    |

